APP Or OG20官方指南，建议同学们刷3遍。第一遍做题了解题型和考点，第二遍精刷，第三遍集中解决疑难问题。建议考生第一遍刷题采用官方正版纸质书籍，若遇到疑难问题，欢迎在此专区查阅解析，提供解析，参与题目讨论，与所有考生一起解决疑难问题。

##### 请描述一下这个错误：

【OG20-P177-200题】

If n = (33)43 + (43)33, what is the units digit of n ?

• 分析A选项 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
• 分析B选项 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
• 分析C选项 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
• 分析D选项 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
• 分析E选项 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 暂无雷哥网文字解析

`幂指数的考题33和43的次方数，各位数字应该是3.9.7.143/4=10...3 第三位，那就是733/4=8...1 第一位：3所以是相加为10 所以各位为0`

### 题目讨论 （3条评论） • emily666

`懂了，四个数循环，刚好个位数分别是7，3` 0 0 回复 2020-03-12 23:27:08
• 黑猫警长

```转自 GMATclub
irst of all, the units digit of (33)^43 is the same as that of 3^43 and the units digit of (43)^33 is the same as that of 3^33. So, we need to find the units digit of 3^43 + 3^33.

Next, the units digit of 3 in positive integer power repeats in blocks of four {3, 9, 7, 1}:
3^1=3 (the units digit is 3)
3^2=9 (the units digit is 9)
3^3=27 (the units digit is 7)
3^4=81 (the units digit is 1)
3^5=243 (the units digit is 3 again!)
...

Thus:
The units digit of 3^43 is the same as the units digit of 3^3, so 7 (43 divided by the cyclicity of 4 gives the remainder of 3).
The units digit of 3^33 is the same as the units digit of 3^1, so 3 (33 divided by the cyclicity of 4 gives the remainder of 1).

Therefore the units digit of (33)^43 + (43)^33 is 7 + 3 = 0.``` 0 0 回复 2019-07-10 21:44:24
• 默默

`看末位数的循环` 0 0 回复 2018-04-28 06:40:15  • 手机注册
• 邮箱注册
登录＞ ### • #### 知识库学习

GMAT语法、逻辑、阅读、数学各单项备考知识点学习及测验
• #### 在线做题

包含GMAT各单项必考知识点题目、OG/PREP/GWD/雷哥讲义题目、难度650/680/700/730题库题目练习及题目解析
• #### 在线模考

语文套题/数学套题/全套仿真模考，包含GWD/PERP/精选模考等上百套套题模考
• #### 在线测评

适合5种不同基础的GMAT学员，测评后可自动出具分数报告及复习计划指导
• #### 资料下载

GMAT必备备考资料下载、鸡精下载、课程课件等免费下载
• #### 课程学习

注册会员后，可在GMAT课程区，选择免费直播课程及公开课程进行在线学习
×
请你选择你要查看的模考成绩单  立即开通 暂不开通  