建议使用官方纸质指南,查看对照完整题目
【OG20-P289-412题】
If k is an integer such that 56 < k < 66, what is the value of k ?
(1) If k were divided by 2, the remainder would be 1.
(2) If k + 1 were divided by 3, the remainder would be 0.
-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
该题平均耗时:1m49s ,平均正确率:62.6%。
该题由网友7jB1ky提供。更多GMAT题目请

当前版本由
蒋维鹏 更新于2020-11-20 22:16:48 感谢由
蒋维鹏 对此题目的解答所做出的贡献。
条件1:k=57, 59, 61, 63, 65
条件2:k+1=57, 60, 63, 66(题干的范围是k小于66,不是k+1)K+1=66,k=65符合条件范围
条件2中的k=56, 59, 62, 65
解不唯一,两个解,59和65
题目讨论 (3条评论)

提交
-
冲他丫的
,,,我
0
0 回复 2021-10-15 23:56:49
-
贾思敏
绝了,我做这道题竟然错了,可能是做题的精神状态一般,没休息好有毒。 错题分析一下:这道题就是列举法 1、把符合条件一和题干的取值范围的数列举出来,发现有很多数都符合,答案不唯一,不充分。 2、再看条件二,同理,结合题干的取值范围和条件二的要求列举数字出来,发现也是可以取很多数的,不充分。 3、最后,结合条件一和条件二,就是取条件一和条件二的交集吧,发现有两个数可以取得到,答案不唯一,不充分。
0
0 回复 2021-09-28 22:48:28
-
bella
(1) If k were divided by 2, the remainder would be 1 --> k is an odd number, thus it could be 57, 59, 61, 63, or 65. Not sufficient. (2) If k + 1 were divided by 3, the remainder would be 0 --> k is 1 less than a multiple of 3, thus it could be 59, 62, or 65. Not sufficient. (1)+(2) k could still take more than one value: 59 or 65. Not sufficient. Answer: E.
0
0 回复 2015-06-26 16:28:20